
© Copyright IBM Corporation 2001 Trademarks
XML Watch: Bird's-eye BEEP Page 1 of 5

XML Watch: Bird's-eye BEEP
Part 1 of an introduction to the Blocks Extensible Exchange Protocol
standard of the IETF

Edd Dumbill 01 December 2001

While debate continues on reusing HTTP as a convenient way to connect applications, a new
protocol called BEEP -- Blocks Extensible Exchange Protocol -- has been standardized by
the Internet Engineering Task Force (IETF). Making use of XML itself, BEEP does for Internet
protocols what XML has done for documents and data. In his first column for developerWorks,
seasoned XML observer Edd Dumbill explains how BEEP provides a framework that allows
developers to focus on the important aspects of their applications rather than wasting time with
the detail of establishing communication channels.

View more content in this series

Welcome to the first article in a series that will examine the practicalities of using new XML-based
technologies. In these columns, I'll take a look at an XML technology, and at attempts to deploy it
in a practical system. In addition to reporting on the deployment experience, I expect to have some
fun along the way too. I won't expect too much prior knowledge from the reader, but a grounding in
basic Web standards such as XML and HTTP will help.

Introducing BEEP

For starters, the next few columns will look at BEEP, one of the many acronyms lurking in the
alphabet soup of Web services. The purpose of this article is to introduce the BEEP protocol
framework and to suggest where it may be appropriately used.

BEEP stands for Blocks Extensible Exchange Protocol, an expansion which makes almost as little
sense as just saying BEEP, and frankly is far less entertaining. Nevertheless, XML users will likely
find themselves drawn to the word extensible, and indeed it's extensibility that makes BEEP worth
looking at in the first place. More of that later; first let's look at the problem that BEEP solves.

You're writing a networked application, and you want instances of your programs to be able to
communicate via TCP/IP. Before you can even get around to the logic of your application itself,
you need to figure out how your programs are going to connect, authenticate themselves, send

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/
http://www.ibm.com/developerworks/views/xml/libraryview.jsp?search_by=xml+watch:


developerWorks® ibm.com/developerWorks/

XML Watch: Bird's-eye BEEP Page 2 of 5

messages, receive messages, and report errors. The cumulative time you'll spend on this may well
outweigh the effort needed for the application logic itself. In a nutshell, this is the problem BEEP
solves. It implements all the "hygiene factors" of creating a new network protocol so you don't have
to worry about them.

At this point you may well be wondering, and not without justification, why we need another type of
distributed computing protocol to add to CORBA/IIOP, SOAP, XML-RPC, and friends. In answer,
you need to recognize that BEEP sits at a different level. It's a framework. SOAP can happily be
implemented on top of BEEP. BEEP takes care of the connections, the authentication, and the
packaging up at the TCP/IP level of the messages -- matters that SOAP deliberately avoids. BEEP
really competes on the same level as HTTP.

Reuse and refactoring
Designers of recent application protocols have looked upon HTTP, and seen that it was good.
Well, good enough. So WebDAV, the protocol underlying the "net folders" feature in Windows,
added a few verbs to HTTP in order to allow distributed authoring. The Internet Printing Protocol
invented some HTTP headers in order to use HTTP/1.1 to do its work, and the binding of SOAP to
HTTP has done a similar thing (see Resources for background on these three uses of the HTTP
protocol).

In principle, the right thing has been done. A ubiquitous and widely implemented protocol, HTTP,
has been reused in an efficient way. There are some unfortunate consequences: the first of these
is the resultant overloading of port 80. Since not just Web page requests, but potentially security-
critical business requests are passing through port 80 now, increased vigilance is required. The
many interactions with Web caches and other devices which affect port 80 must be taken into
account. These issues have been rehearsed extensively elsewhere (see Resources), so I won't go
into detail here.

The second consequence of reusing HTTP is that you're tied to using its model of interaction.
HTTP is a stateless request-response-oriented protocol. There can be no requests without a
response, and there can be no response without a request. Additionally, no state is preserved
between requests. Unfortunately, this isn't good enough for many interaction schemes, as it
precludes things like asynchrony, stateful interaction, and peer-to-peer communication. These
problems can and have been circumvented by layering on top of HTTP, but most of these solutions
feel awkward at best.

It is at this point that the seasoned programmer would tell you it's time to refactor, that is, to place
the responsibilities of a system at their correct level and abstract out common functionality. This is
the best way to look at BEEP: it is essentially a refactoring of an overloaded HTTP to support the
common requirements of today's Internet application protocols.

So what can it do?
Enough scene setting, it's time to look at what BEEP can and cannot do, so you can get an idea of
why you might want to use it.



ibm.com/developerWorks/ developerWorks®

XML Watch: Bird's-eye BEEP Page 3 of 5

In a presentation given by Marshall Rose (see Resources), the author of the BEEP specification,
BEEP's "target market" of application is described in the following terms:

• Connection-oriented: Applications passing data using BEEP are expected to connect, do
their business, and then disconnect. This gives rise to the characteristics of communication
being ordered, reliable, and congestion sensitive. (Paralleling at the IP level shares many of
the same characteristics of using TCP rather than UDP.)

• Message-oriented: Applications passing data using BEEP are expected to communicate
using defined bundles of structured data. This means that the communicating applications are
loosely coupled and don't require extensive knowledge of each others' interfaces.

• Asynchronous: Unlike HTTP, BEEP is not restricted to a particular ordering of requests and
responses. Asynchronicity allows for peer-to-peer style communication, but it doesn't rule out
conventional client/server communication either.

While these characteristics encompass a large number of potential applications (for instance, they
would happily permit the re-implementation of HTTP, FTP, SMTP, and various instant-messaging
protocols), a number of applications fall outside of BEEP's scope. These include one-shot
exchanges such as DNS lookup, where the cost introduced by BEEP would be disproportionate, or
tightly coupled RPC protocols like NFS.

Given that an application falls into the target market, what can BEEP offer? Its main areas of
functionality are:

• Separating one message from the next (framing)
• Encoding of messages
• Allowing multiple asynchronous requests
• Reporting errors
• Negotiating encryption
• Negotiating authentication

The fact you don't have to worry about these things leaves you free to add the other ingredients
to your networked application. You can start thinking about message types and structures, for
instance.

BEEP concepts

BEEP is a peer-to-peer protocol, which means that it has no notion of client or server, unlike
HTTP. However, as with arguments and romance, somebody has to make the first move. So for
convenience I'll refer to the peer that starts a connection as the initiator, and the peer accepting the
connection as the listener. When a connection is established between the two, a BEEP session is
created.



developerWorks® ibm.com/developerWorks/

XML Watch: Bird's-eye BEEP Page 4 of 5

Figure 1. BEEP sessions, channels, and profiles

Channels

All communication in a session happens within one or more channels, as illustrated in Figure
1. The peers require only one IP connection, which is then multiplexed to create channels. The
nature of communication possible within that channel is determined by the profiles it supports
(each channel may have one or more.)

The first channel, channel 0, has a special purpose. It supports the BEEP management profile,
which is used to negotiate the setup of further channels. The supported profiles determine the
precise interaction between the peers in a particular channel. Defining a protocol using BEEP
comes down to the definition of profiles.

Two types of profiles

After the establishment of a session, the initiator asks to start a channel for the particular profile
or set of profiles it wishes to use. If the listener supports the profile(s), the channel will be created.
Profiles themselves take one of two forms: those for initial tuning, and those for data exchange.

Tuning profiles, set up at the start of communication, affect the rest of the session in some way.
For instance, requesting the TLS profile ensures that channels are encrypted using Transport
Layer Security. Other tuning profiles perform steps such as authentication.

Data-exchange profiles set expectations between the two peers as to what sort of exchanges will
be allowed in a channel, similar to the way Java interfaces set expectations between interacting
objects as to what methods are available. As with XML namespaces, a profile is identified by
a URI. For instance, the example "Echo" profile from the BEEP Java tools has the URI http://
xml.resource.org/profiles/NULL/ECHO.

Types of data

BEEP puts no limits on the kind of data a channel can carry. BEEP uses the MIME standard to
support payloads of arbitrary type. This approach neatly sidesteps the sorts of issues raised by
SOAP of how to send an XML document or a binary file inside a SOAP message.



ibm.com/developerWorks/ developerWorks®

XML Watch: Bird's-eye BEEP Page 5 of 5

The XML connection

At the beginning of this article I promised you that BEEP made use of XML, and by this point
you'd be forgiven for wondering where. In fact, the BEEP management profile, responsible for
channel initiation, is defined as an XML DTD (see Resources for a pointer to the management
profile definition). This is why XML and BEEP fit so well together: as BEEP takes care of protocol
infrastructure, XML takes care of data structuring. Hence XML is a natural choice in which to
define the syntax of messages in BEEP profiles (although, as noted above, profiles can use any
MIME type).

Aside from the channel-management profile, many emerging BEEP application profiles have used
XML as an encoding for their messages. This is a boon, as it means that any existing messaging
standard defined in terms of XML documents has a reasonably straightforward mapping into a
BEEP profile.

Wrapping it up

In this article I've explained the rationale for using BEEP and outlined its target application areas.
I've given a very high-level overview of how BEEP interactions take place. The next column will
go into more detail on how communication is achieved through channels and profiles, with an
example implementation in Java.

© Copyright IBM Corporation 2001
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Introducing BEEP
	Reuse and refactoring
	So what can it do?
	BEEP concepts
	Channels
	Two types of profiles
	Types of data
	The XML connection

	Wrapping it up
	Resources
	Trademarks

